Protein sequence design on given backbones with deep learning

Author:

Liu Yufeng1ORCID,Liu Haiyan123

Affiliation:

1. University of Science and Technology of China MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, , Hefei, Anhui 230027, China

2. University of Science and Technology of China Biomedical Sciences and Health Laboratory of Anhui Province, , Hefei, Anhui 230027, China

3. University of Science and Technology of China School of Biomedical Engineering, Suzhou Institute for Advanced Research, , Suzhou, Jiangsu 215004, China

Abstract

Abstract Deep learning methods for protein sequence design focus on modeling and sampling the many- dimensional distribution of amino acid sequences conditioned on the backbone structure. To produce physically foldable sequences, inter-residue couplings need to be considered properly. These couplings are treated explicitly in iterative methods or autoregressive methods. Non-autoregressive models treating these couplings implicitly are computationally more efficient, but still await tests by wet experiment. Currently, sequence design methods are evaluated mainly using native sequence recovery rate and native sequence perplexity. These metrics can be complemented by sequence-structure compatibility metrics obtained from energy calculation or structure prediction. However, existing computational metrics have important limitations that may render the generalization of computational test results to performance in real applications unwarranted. Validation of design methods by wet experiments should be encouraged.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Biochemistry,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3