Evolution-strengthened knowledge graph enables predicting the targetability and druggability of genes

Author:

Quan Yuan1ORCID,Xiong Zhan-Kun1,Zhang Ke-Xin1,Zhang Qing-Ye1,Zhang Wen1,Zhang Hong-Yu1ORCID

Affiliation:

1. Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University , Wuhan, Hubei 430070 , P. R. China

Abstract

Abstract Identifying promising targets is a critical step in modern drug discovery, with causative genes of diseases that are an important source of successful targets. Previous studies have found that the pathogeneses of various diseases are closely related to the evolutionary events of organisms. Accordingly, evolutionary knowledge can facilitate the prediction of causative genes and further accelerate target identification. With the development of modern biotechnology, massive biomedical data have been accumulated, and knowledge graphs (KGs) have emerged as a powerful approach for integrating and utilizing vast amounts of data. In this study, we constructed an evolution-strengthened knowledge graph (ESKG) and validated applications of ESKG in the identification of causative genes. More importantly, we developed an ESKG-based machine learning model named GraphEvo, which can effectively predict the targetability and the druggability of genes. We further investigated the explainability of the ESKG in druggability prediction by dissecting the evolutionary hallmarks of successful targets. Our study highlights the importance of evolutionary knowledge in biomedical research and demonstrates the potential power of ESKG in promising target identification. The data set of ESKG and the code of GraphEvo can be downloaded from https://github.com/Zhankun-Xiong/GraphEvo.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3