Soft pinning: Experimental validation of static correlations in supercooled molecular glass-forming liquids

Author:

Das Rajsekhar12ORCID,Bhowmik Bhanu Prasad23,Puthirath Anand B24ORCID,Narayanan Tharangattu N2ORCID,Karmakar Smarajit2ORCID

Affiliation:

1. Department of Chemistry, University of Texas at Austin , Austin, TX 78712 , USA

2. TIFR Center for Interdisciplinary Science, Tata Institute of Fundamental Research , Hyderabad 500046 , India

3. Department of Chemical Physics, The Weizmann Institute of Science , Rehovot 76100 , Israel

4. Department of Materials Science and NanoEngineering, Rice University , 6100 Main Street, Houston, TX 77005 , USA

Abstract

Abstract Enormous enhancement in the viscosity of a liquid near its glass transition is a hallmark of glass transition. Within a class of theoretical frameworks, it is connected to growing many-body static correlations near the transition, often called “amorphous ordering.” At the same time, some theories do not invoke the existence of such a static length scale in the problem. Thus, proving the existence and possible estimation of the static length scales of amorphous order in different glass-forming liquids is very important to validate or falsify the predictions of these theories and unravel the true physics of glass formation. Experiments on molecular glass-forming liquids become pivotal in this scenario as the viscosity grows several folds (∼1014), and simulations or colloidal glass experiments fail to access these required long-time scales. Here we design an experiment to extract the static length scales in molecular liquids using dilute amounts of another large molecule as a pinning site. Results from dielectric relaxation experiments on supercooled Glycerol with different pinning concentrations of Sorbitol and Glucose, as well as the simulations on a few model glass-forming liquids with pinning sites, indicate the versatility of the proposed method, opening possible new avenues to study the physics of glass transition in other molecular liquids.

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Creating equilibrium glassy states via random particle bonding;Journal of Statistical Mechanics: Theory and Experiment;2024-01-01

2. Athermal quasistatic cavitation in amorphous solids: Effect of random pinning;The Journal of Chemical Physics;2023-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3