Athermal quasistatic cavitation in amorphous solids: Effect of random pinning

Author:

Dattani Umang A.12ORCID,Karmakar Smarajit3ORCID,Chaudhuri Pinaki12ORCID

Affiliation:

1. The Institute of Mathematical Sciences, C.I.T. Campus 1 , Taramani, Chennai 600113, India

2. Homi Bhabha National Institute 2 , Anushakti Nagar, Mumbai 400094, India

3. Tata Institute of Fundamental Research 3 , 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046, Telangana, India

Abstract

Amorphous solids are known to fail catastrophically via fracture, and cavitation at nano-metric scales is known to play a significant role in such a failure process. Micro-alloying via inclusions is often used as a means to increase the fracture toughness of amorphous solids. Modeling such inclusions as randomly pinned particles that only move affinely and do not participate in plastic relaxations, we study how the pinning influences the process of cavitation-driven fracture in an amorphous solid. Using extensive numerical simulations and probing in the athermal quasistatic limit, we show that just by pinning a very small fraction of particles, the tensile strength is increased, and also the cavitation is delayed. Furthermore, the cavitation that is expected to be spatially heterogeneous becomes spatially homogeneous by forming a large number of small cavities instead of a dominant cavity. The observed behavior is rationalized in terms of screening of plastic activity via the pinning centers, characterized by a screening length extracted from the plastic-eigenmodes.

Funder

Science and Engineering Research Board

Department of Science and Technology, Ministry of Science and Technology, India

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3