Fermionic quantum turbulence: Pushing the limits of high-performance computing

Author:

Wlazłowski Gabriel12ORCID,Forbes Michael McNeil23ORCID,Sarkar Saptarshi Rajan3ORCID,Marek Andreas4ORCID,Szpindler Maciej5ORCID

Affiliation:

1. Faculty of Physics, Warsaw University of Technology , Ulica Koszykowa 75, 00-662 Warsaw, Poland

2. Department of Physics, University of Washington , Seattle, WA 98195-1560, USA

3. Department of Physics and Astronomy, Washington State University , Pullman, WA 99164, USA

4. Max Planck Computing and Data Facility (MPCDF) , 85741 Garching Near Munich, Germany

5. Academic Computer Centre CYFRONET, AGH University of Krakow , Ulica Nawojki 11, 30-950 Cracow, Poland

Abstract

Abstract Ultracold atoms provide a platform for analog quantum computer capable of simulating the quantum turbulence that underlies puzzling phenomena like pulsar glitches in rapidly spinning neutron stars. Unlike other platforms like liquid helium, ultracold atoms have a viable theoretical framework for dynamics, but simulations push the edge of current classical computers. We present the largest simulations of fermionic quantum turbulence to date and explain the computing technology needed, especially improvements in the Eigenvalue soLvers for Petaflop Applications library that enable us to diagonalize matrices of record size (millions by millions). We quantify how dissipation and thermalization proceed in fermionic quantum turbulence by using the internal structure of vortices as a new probe of the local effective temperature. All simulation data and source codes are made available to facilitate rapid scientific progress in the field of ultracold Fermi gases.

Funder

National Science Center

NOMAD Centre of Excellence

National Science Foundation

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Solving Millions of Eigenvectors in Large-Scale Quantum-Many-Body-Theory Computations;ISC High Performance 2024 Research Paper Proceedings (39th International Conference);2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3