Liquid–liquid phase transition in deeply supercooled Stillinger–Weber silicon

Author:

Goswami Yagyik1ORCID,Sastry Srikanth1ORCID

Affiliation:

1. Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research , Rachenahalli Lake Road, Bengaluru 560064 , India

Abstract

Abstract The existence of a phase transition between two distinct liquid phases in single-component network-forming liquids (e.g. water, silica, silicon) has elicited considerable scientific interest. The challenge, both for experiments and simulations, is that the liquid–liquid phase transition (LLPT) occurs under deeply supercooled conditions, where crystallization occurs very rapidly. Thus, early evidence from numerical equation of state studies was challenged with the argument that slow spontaneous crystallization had been misinterpreted as evidence of a second liquid state. Rigorous free-energy calculations have subsequently confirmed the existence of a LLPT in some models of water, and exciting new experimental evidence has since supported these computational results. Similar results have so far not been found for silicon. Here, we present results from free-energy calculations performed for silicon modeled with the classical, empirical Stillinger-Weber–potential. Through a careful study employing state-of-the-art constrained simulation protocols and numerous checks for thermodynamic consistency, we find that there are two distinct metastable liquid states and a phase transition. Our results resolve a long-standing debate concerning the existence of a liquid–liquid transition in supercooled liquid silicon and address key questions regarding the nature of the phase transition and the associated critical point.

Funder

Jawaharlal Nehru Centre for Advanced Scientific Research

Department of Science and Technology

Publisher

Oxford University Press (OUP)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3