Kinetic reconstruction of free energies as a function of multiple order parameters

Author:

Goswami Yagyik1ORCID,Sastry Srikanth1ORCID

Affiliation:

1. Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur Campus, Bengaluru 560064, India

Abstract

A vast array of phenomena, ranging from chemical reactions to phase transformations, are analyzed in terms of a free energy surface defined with respect to a single or multiple order parameters. Enhanced sampling methods are typically used, especially in the presence of large free energy barriers, to estimate free energies using biasing protocols and sampling of transition paths. Kinetic reconstructions of free energy barriers of intermediate height have been performed, with respect to a single order parameter, employing the steady state properties of unconstrained simulation trajectories when barrier crossing is achievable with reasonable computational effort. Considering such cases, we describe a method to estimate free energy surfaces with respect to multiple order parameters from a steady state ensemble of trajectories. The approach applies to cases where the transition rates between pairs of order parameter values considered is not affected by the presence of an absorbing boundary, whereas the macroscopic fluxes and sampling probabilities are. We demonstrate the applicability of our prescription on different test cases of random walkers executing Brownian motion in order parameter space with an underlying (free) energy landscape and discuss strategies to improve numerical estimates of the fluxes and sampling. We next use this approach to reconstruct the free energy surface for supercooled liquid silicon with respect to the degree of crystallinity and density, from unconstrained molecular dynamics simulations, and obtain results quantitatively consistent with earlier results from umbrella sampling.

Funder

Science and Engineering Research Board

Mission on Nano Science and Technology

National Supercomputing Mission, India

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3