Dimension matters when modeling network communities in hyperbolic spaces

Author:

Désy Béatrice12ORCID,Desrosiers Patrick345ORCID,Allard Antoine34ORCID

Affiliation:

1. School of Information Management, Victoria University of Wellington , Wellington 6140 , New Zealand

2. Antarctic Research Centre, Victoria University of Wellington , Wellington 6140 , New Zealand

3. Département de physique, de génie physique et d’optique, Université Laval , Québec, QC , Canada G1V 0A6

4. Centre interdisciplinaire en modélisation mathématique, Université Laval , Québec, QC , Canada G1V 0A6

5. Centre de recherche CERVO , Québec, QC , Canada G1J 2G3

Abstract

Abstract Over the last decade, random hyperbolic graphs have proved successful in providing geometric explanations for many key properties of real-world networks, including strong clustering, high navigability, and heterogeneous degree distributions. These properties are ubiquitous in systems as varied as the internet, transportation, brain or epidemic networks, which are thus unified under the hyperbolic network interpretation on a surface of constant negative curvature. Although a few studies have shown that hyperbolic models can generate community structures, another salient feature observed in real networks, we argue that the current models are overlooking the choice of the latent space dimensionality that is required to adequately represent clustered networked data. We show that there is an important qualitative difference between the lowest-dimensional model and its higher-dimensional counterparts with respect to how similarity between nodes restricts connection probabilities. Since more dimensions also increase the number of nearest neighbors for angular clusters representing communities, considering only one more dimension allows us to generate more realistic and diverse community structures.

Publisher

Oxford University Press (OUP)

Reference63 articles.

1. Sustaining the Internet with hyperbolic mapping;Boguñá;Nat Commun,2010

2. Navigable maps of structural brain networks across species;Allard;PLoS Comput Biol,2020

3. Network geometry;Boguñá;Nat Rev Phys,2021

4. Small worlds and clustering in spatial networks;Boguñá;Phys Rev Res,2020

5. Popularity versus similarity in growing networks;Papadopoulos;Nature,2012

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Random hyperbolic graphs in d+1 dimensions;Physical Review E;2024-05-30

2. The Hidden-Degree Geometric Block Model;Studies in Computational Intelligence;2024

3. The D-Mercator method for the multidimensional hyperbolic embedding of real networks;Nature Communications;2023-11-21

4. Geometric description of clustering in directed networks;Nature Physics;2023-11-02

5. Exact and rapid linear clustering of networks with dynamic programming;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3