Higher solutions of Hitchin’s self-duality equations

Author:

Heller Lynn1,Heller Sebastian1

Affiliation:

1. Leibniz Universität Hannover, Institut für Differentialgeometrie, Welfengarten 1, 30167 Hannover, Germany

Abstract

AbstractSolutions of Hitchin’s self-duality equations correspond to special real sections of the Deligne–Hitchin moduli space—twistor lines. A question posed by Simpson in 1997 asks whether all real sections give rise to global solutions of the self-duality equations. An affirmative answer would in principle allow for complex analytic procedures to obtain all solutions of the self-duality equations. The purpose of this article is to construct counter examples given by certain (branched) Willmore surfaces in three-space (with monodromy) via the generalized Whitham flow. Though these sections do not give rise to global solutions of the self-duality equations on the whole Riemann surface M, they induce solutions on an open and dense subset of it. This suggest a connection between Willmore surfaces, i.e., rank 4 harmonic maps theory, with the rank 2 self-duality theory.

Funder

DFG

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real projective structures on Riemann surfaces and new hyper-Kähler manifolds;manuscripta mathematica;2022-02-12

2. Isothermic constrained Willmore tori in 3-space;Annals of Global Analysis and Geometry;2021-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3