Abstract
AbstractWe show that the homogeneous and the 2-lobe Delaunay tori in the 3-sphere provide the only isothermic constrained Willmore tori in 3-space with Willmore energy below $$8\pi $$
8
π
. In particular, every constrained Willmore torus with Willmore energy below $$8\pi $$
8
π
and non-rectangular conformal class is non-degenerated.
Funder
Deutsche Forschungsgemeinschaft
Gottfried Wilhelm Leibniz Universität Hannover
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Analysis
Reference28 articles.
1. Alexandrov, A.D.: Uniqueness theorems for surfaces in the large v. Amer. Math. Soc. Transl. 21, 412–416 (1962)
2. Andrews, B., Li, H.: Embedded constant mean curvature tori in the three-sphere. J. Differential Geom. 99(2), 169–189 (2015)
3. Babich, M., Bobenko, A.: Willmore tori with umbilic lines and minimal surfaces in hyperbolic space. Duke Math. J. 72(1), 151–185 (1993)
4. Bohle, C.: Constrained Willmore tori in the 4-sphere. J. Differential Geom. 86(1), 71–131 (2010)
5. Bohle, C., Leschke, K., Pedit, F., Pinkall, U.: Conformal maps from a 2-torus to the 4-sphere. J. Reine Angew. Math. 671, 1–30 (2012)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献