Root traits benefitting crop production in environments with limited water and nutrient availability

Author:

White Philip J123

Affiliation:

1. Ecological Science Group, The James Hutton Institute, Invergowrie, Dundee, UK

2. National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China

3. Distinguished Scientist Fellowship Program, King Saud University, Riyadh, Saudi Arabia

Abstract

Abstract Background Breeding for advantageous root traits will play a fundamental role in improving the efficiency of water and nutrient acquisition, closing yield gaps, and underpinning the ‘Evergreen Revolution’ that must match crop production with human demand. Scope This preface provides an overview of a Special Issue of Annals of Botany on ‘Root traits benefitting crop production in environments with limited water and nutrient availability’. The first papers in the Special Issue examine how breeding for reduced shoot stature and greater harvest index during the Green Revolution affected root system architecture. It is observed that reduced plant height and root architecture are inherited independently and can be improved simultaneously to increase the acquisition and utilization of carbon, water and mineral nutrients. These insights are followed by papers examining beneficial root traits for resource acquisition in environments with limited water or nutrient availability, such as deep rooting, control of hydraulic conductivity, formation of aerenchyma, proliferation of lateral roots and root hairs, foraging of nutrient-rich patches, manipulation of rhizosphere pH and the exudation of low molecular weight organic solutes. The Special Issue concludes with papers exploring the interactions of plant roots and microorganisms, highlighting the need for plants to control the symbiotic relationships between mycorrhizal fungi and rhizobia to achieve maximal growth, and the roles of plants and microbes in the modification and development of soils.

Funder

Rural and Environment Science and Analytical Services Division

Publisher

Oxford University Press (OUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3