Chemical and physical influence of sodic soils on the coleoptile length and root growth angle of wheat genotypes

Author:

Anzooman Monia1,Christopher Jack2,Dang Yash P1,Taylor Julian3,Menzies Neal W1,Kopittke Peter M1

Affiliation:

1. The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland, Australia

2. The University of Queensland, Queensland Alliance for Agricultural and Food Innovation, Leslie Research Facility, Toowoomba, Queensland, Australia

3. The University of Adelaide, School of Agriculture, Food and Wine, Waite Campus, Glen Osmond, South Australia, Australia

Abstract

Abstract Background and Aims High exchangeable sodium percentage (ESP) and bulk density of sodic soils can reduce seedling emergence. This study examined variation in seedling coleoptile length and seminal root angle of wheat (Triticum aestivum. L) genotypes to determine whether these traits vary between genotypes that differ in their tolerance to sodic soils. Methods Wheat genotypes were grown in three different experiments. First, four wheat genotypes were grown using soils of three ESPs (4, 10 and 17 %) and secondly in soils of three different bulk densities (1.2, 1.4 and 1.5 g cm–3) and ESP 10 %. Thirdly, seedling coleoptile length and seminal root angle were determined for 16 genotypes grown in a soil of ESP 10 % and bulk density 1.2 g cm–2. Seminal root angle and coleoptile length measurements from the current study were compared with seedling emergence rate and force measured previously. Key Results The seedling coleoptile length of all genotypes decreased with increasing soil ESP and bulk density, but with no significant differences between genotypes. In contrast, seminal root angles differed significantly between genotypes, but were not significantly affected by ESP or bulk density. There was an inverse relationship between the seminal root angle of the 16 genotypes and seedling emergence rate (R2 = 0.89) and also between seminal root angle and seedling emergence force (R2 = 0.61). Conclusions Lack of significant variation in coleoptile length between genotypes suggests that this may not be a suitable characteristic to identify wheat tolerance to sodic conditions. However, a narrower seminal root angle was correlated with rate and force of seedling emergence, traits likely to improve establishment. The mechanism underlying this correlation is not yet clear. Genotypes with a narrow root angle had greater root depth. One possible mechanism might be that genotypes with narrow root angles were able to take up more soil moisture at depth, leading to a higher proportion of seedling emergence.

Funder

University of Queensland

Department of Agriculture and Fisheries, Queensland Government

Australian Grains Research and Development Corporation

Publisher

Oxford University Press (OUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3