Estimation of direct and maternal genetic effects and annotation of potential candidate genes for weight and meat quality traits in a genotyped outdoor dual-purpose cattle breed

Author:

Halli Kathrin1ORCID,Bohlouli Mehdi1ORCID,Schulz Lisa2,Sundrum Albert2,König Sven1ORCID

Affiliation:

1. Institute of Animal Breeding and Genetics, Group Animal Breeding, Justus Liebig University, Giessen, 35390, Germany

2. Department of Animal Nutrition and Animal Health, Kassel University, Witzenhausen, 37213, Germany

Abstract

Abstract With regard to potential applications of genomic selection in small numbered breeds, we evaluated genomic models and focused on potential candidate gene annotations for weight and meat quality traits in the local Rotes Höhenvieh (RHV) breed. Traits included 6,003 birth weights (BWT), 5,719 200 d-weights (200dw), 4,594 365 d-weights (365dw), and 547 records for intramuscular fat content (IMF). A total of 581,304 SNP from 370 genotyped cattle with phenotypic records were included in genomic analyses. Model evaluations focused on single- and multiple-trait models with direct and with direct and maternal genetic effects. Genetic relationship matrices were based on pedigree (A-matrix), SNP markers (G-matrix), or both (H-matrix). Genome-wide association studies (GWASs) were carried out using linear mixed models to identify potential candidate genes for the traits of interest. De-regressed proofs (DRP) for direct and maternal genetic components were used as pseudo-phenotypes in the GWAS. Accuracies of direct breeding values were higher from models based on G or on H compared to A. Highest accuracies (> 0.89) were obtained for IMF with multiple-trait models using the G-matrix. Direct heritabilities with maternal genetic effects ranged from 0.62 to 0.66 for BWT, from 0.45 to 0.55 for 200dW, from 0.40 to 0.44 for 365dW, and from 0.48 to 0.75 for IMF. Maternal heritabilities for BWT, 200dW, and 365dW were in a narrow range from 0.21 to 0.24, 0.24 to 0.27, and 0.21 to 0.25, respectively, and from 0.25 to 0.65 for IMF. Direct genetic correlations among body weight traits were positive and favorable, and very similar from different models but showed a stronger variation with 0.31 (A), −0.13 (G), and 0.45 (H) between BWT and IMF. In gene annotations, we identified 6, 3, 1, and 6 potential candidate genes for direct genetic effect on BWT, 200dW, 365dW, and IMF traits, respectively. Regarding maternal genetic effects, four (SHROOM3, ZNF609, PECAM1, and TEX2) and two (TMEM182 and SEC11A) genes were detected as potential candidate genes for BWT and 365dW, respectively. Potential candidate genes for maternal effect on IMF were GRHL2, FGA, FGB, and CTNNA3. As the most important finding from a practical breeding perspective, a small number of genotyped RHV cattle enabled accurate breeding values for high heritability IMF.

Publisher

Oxford University Press (OUP)

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3