Resprouting potential of rhizome fragments from invasive macrophyte reveals superior colonization ability of the diploid congener

Author:

Grewell Brenda J1,Futrell Caryn J1,Iannucci Maria T12,Drenovsky Rebecca E2

Affiliation:

1. USDA-Agricultural Research Service, Invasive Species and Pollinator Health Research Unit, Department of Plant Sciences MS-4, University of California, Davis, Davis, CA, USA

2. Biology Department, John Carroll University, University Heights, OH, USA

Abstract

Abstract Non-native aquatic Ludwigia species from a polyploid complex are among the world’s most problematic invasive plants. These emergent, floating-leaved species respond to disturbance through fragmentation of shoots and/or rhizomes, spreading rapidly by hydrochorous dispersal and posing challenges for invasive plant management. While recruitment of clonal aquatic plant species from shoot fragmentation is well documented, regeneration from rhizome bud banks, although common, often is overlooked. It is further unclear how interactions among ploidy and resource availability influence regeneration success of rhizome fragments. We conducted a full factorial experiment in aquatic mesocosms to compare trait responses of Ludwigia congeners differing in ploidy (diploid, decaploid) grown from clonal rhizome fragments under contrasting soil nutrient availability (low, high). Similar to previous work with shoot fragments, the diploid congener had a higher relative growth rate and produced more biomass than the decaploid during this establishment stage of growth. High growth rates and biomass production were associated with greater rhizome N and P and reduced investment in belowground structures. Comparing these results to previous shoot fragment studies with Ludwigia, rhizome fragments appear to have much greater growth potential, suggesting that management strategies should minimize disturbance to prevent fragmentation and dispersal of belowground structures. Furthermore, rapid response to newly colonizing diploid invaders will be essential to minimizing spread, and reductions in nutrient loads to aquatic environments may be more effective toward controlling establishment of the diploid congener than the decaploid.

Publisher

Oxford University Press (OUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3