A perennial invader’s seed and rhizome differ in cold tolerance and apparent local adaptation

Author:

Lakoba Vasiliy T.ORCID,Welbaum Gregory E.ORCID,Seiler John R.,Barney Jacob N.

Abstract

Extreme cold plays a key role in the range boundaries of plants. Winter survival is central to their persistence, but not all structures are equally susceptible to frost kill and, therefore, limiting to distributions. Furthermore, we expect intraspecific variation in cold tolerance both within and among tissue types. In a laboratory setting, we determined freezing tolerances of two overwintering propagule types – seeds and rhizomes – of the globally invasive Johnsongrass (Sorghum halepense), testing apparent emergence and electrolyte leakage as a proxy for cell death. We used 18 genotypes from agricultural and non-agricultural habitats spanning the climatic extremes occupied by Johnsongrass in the US. Single node rhizome fragments had an average LT90 of -5.1 °C with no significant variation based on home climate or ecotype. Seeds frozen at -85 °C suffered a decline in germinability to 10% from 25% at 22 °C. Population origin did not affect seed response to any temperature. However, non-agricultural seeds germinated more and faster than agricultural seeds from the coldest climates, with a reversed relationship among warmest origin seeds. Regardless of ecotype, seeds from the cold/dry and wet/warm sectors of Johnsongrass’s range germinated more and faster. Drastic differences in cold tolerance between seeds and rhizome and evidence for seeds’ local adaptation to land use and climate suggest that its spread is likely limited by winter rhizome survival, as well as adaptability of germination behavior to longer winters. These findings shed light on Johnsongrass’ dispersal dynamics and help identify future avenues for mechanistically understanding its range limitation.

Funder

National Institute of Food and Agriculture

Publisher

Pensoft Publishers

Subject

Insect Science,Plant Science,Ecological Modeling,Animal Science and Zoology,Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3