Carbon assimilation through a vertical light gradient in the canopy of invasive herbs grown under different temperature regimes is determined by leaf and whole-plant architecture

Author:

Jorgensen Andreas1,Sorrell Brian K1,Eller Franziska1

Affiliation:

1. Department of Bioscience, Aarhus University, Aarhus C, Denmark

Abstract

Abstract This study examined the acclimation to temperature of two globally invasive species Iris pseudacorus and Lythrum salicaria, which share the same habitat type but differ in morphology. Iris pseudacorus has long vertical leaves, allowing light penetration through the canopy, while L. salicaria has stems with small horizontal leaves, creating significant self-shading. We aimed to build a physiological understanding of how these two species respond to different growth temperatures with regard to growth and gas exchange-related traits over the canopy. Growth and gas exchange-related traits in response to low (15 °C) and high (25 °C) growth temperature regimes were compared. Plants were grown in growth chambers, and light response curves were measured with infrared gas analysers after 23–33 days at three leaf positions on each plant, following the vertical light gradient through the canopy. After 37 days of growth, above-ground biomass, photosynthetic pigments and leaf N concentration were determined. The maximum photosynthesis rate was lower in lower leaf positions but did not differ significantly between temperatures. Iris pseudacorus photosynthesis decreased with decreasing leaf position, more so than L. salicaria. This was explained by decreasing N and chlorophyll concentrations towards the leaf base in I. pseudacorus, while pigment concentrations increased towards the lower canopy in L. salicaria. Biomass, shoot height and specific leaf area increased with temperature, more so in I. pseudacorus than in L. salicaria. Light response curves revealed that L. salicaria had a higher degree of shade acclimation than I. pseudacorus, probably due to self-shading in L. salicaria. High temperature decreased C assimilation at the bottom of the canopy in L. salicaria, while C assimilation in I. pseudacorus was less affected by temperature. As vegetative growth and flowering was stimulated by temperature, the invasive potential of these species is predicted to increase under global warming.

Funder

Carlsberg Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3