Anthropogenic Dusts Influence Leaf Anatomical and Eco-Physiological Traits of Black Locust (Robinia pseudoacacia L.) Growing on Vesuvius Volcano

Author:

De Micco Veronica1ORCID,Amitrano Chiara1ORCID,Balzano Angela2ORCID,Cirillo Chiara1ORCID,Izzo Luigi Gennaro1ORCID,Vitale Ermenegilda3ORCID,Arena Carmen34ORCID

Affiliation:

1. Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici Napoli, Italy

2. Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia

3. Department of Biology, University of Naples Federico II, 80126 Napoli, Italy

4. NBFC—National Biodiversity Future Center, 90133 Palermo, Italy

Abstract

In the Mediterranean region, some areas of the Vesuvius National Park (southern Italy) are subjected to a severe anthropogenic impact, especially during spring and summer seasons. The continuous trampling of tourists and buses leads to the formation of “dust-clouds”, exposing plants, especially along the paths, to a great deposition of powder particles on leaves. The aim of this study was to analyze if the dust deposition induces changes in leaf morpho-anatomical and eco-physiological traits of the alien, invasive, species Robinia pseudoacacia L., with particular attention to the photosystem II (PSII) efficiency. We selected plants located near the paths with a high deposition of dust (HD) and plants far away from the paths (low deposition, LD), and tested them over three dates along summer. We analyzed PSII photochemistry, photosynthetic pigments content, and leaf functional (e.g., relative water content and leaf dry matter content) and morpho-anatomical traits (e.g., parenchyma thickness, mesophyll density). HD plants presented a more efficient PSII activity, indicated by the higher quantum yield of PSII electron transport (FPSII) (9%) and electron transport rate (ETR) (38%) in the end of July. Dust deposition also reversibly altered photosynthetic pigments concentration and some lamina traits, adjustable in the short-term (e.g., intercellular spaces and phenolics distribution). We hypothesize that HD leaves were shielded by dusts which would protect their photosynthetic apparatus from the excess of light.

Funder

Vesuvius National Park

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3