Six co-occurring conifer species in northern Idaho exhibit a continuum of hydraulic strategies during an extreme drought year

Author:

Baker Kathryn V12,Tai Xiaonan3,Miller Megan L1,Johnson Daniel M4

Affiliation:

1. Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, ID, USA

2. Department of Environmental Science, Marist College, Poughkeepsie, NY, USA

3. Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA

4. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA

Abstract

Abstract As growing seasons in the northwestern USA lengthen, on track with climate predictions, the mixed conifer forests that dominate this region will experience extended seasonal drought conditions. The year of 2015, which had the most extreme drought for the area on record, offered a potential analogue of future conditions. During this period, we measured the daily courses of water potential and gas exchange as well as the hydraulic conductivity and vulnerability to embolism of six dominant native conifer species, Abies grandis, Larix occidentalis, Pinus ponderosa, Pinus monticola, Pseudotsuga menziesii and Thuja occidentalis, to determine their responses to 5 months of record-low precipitation. The deep ash-capped soils of the region allowed gas exchange to continue without significant evidence of water stress for almost 2 months after the last rainfall event. Midday water potentials never fell below −2.2 MPa in the evergreen species and −2.7 MPa in the one deciduous species. Branch xylem was resistant to embolism, with P50 values ranging from −3.3 to −7.0 MPa. Root xylem, however, was more vulnerable, with P50 values from −1.3 to −4.6 MPa. With predawn water potentials as low as −1.3 MPa, the two Pinus species likely experienced declines in root hydraulic conductivity. Stomatal conductance of all six species was significantly responsive to vapour pressure only in the dry months (August–October), with no response evident in the wet months (June–July). While there were similarities among species, they exhibited a continuum of isohydry and safety margins. Despite the severity of this drought, all species were able to continue photosynthesis until mid-October, likely due to the mediating effects of the meter-deep, ash-capped silty-loam soils with large water storage capacity. Areas with these soil types, which are characteristic of much of the northwestern USA, could serve as refugia under drier and warmer future conditions.

Funder

National Science Foundation

National Institute of Food and Agriculture

U.S. Department of Agriculture

McIntire Stennis

Northwest Climate Science Center

Stillinger Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3