Coordination of rooting, xylem, and stomatal strategies explains the response of conifer forest stands to multi-year drought in the southern Sierra Nevada of California

Author:

Ding JunyanORCID,Buotte PollyORCID,Bales RogerORCID,Christoffersen BradleyORCID,Fisher Rosie A.,Goulden Michael,Knox Ryan,Kueppers Lara,Shuman JacquelynORCID,Xu Chonggang,Koven Charles D.ORCID

Abstract

Abstract. Extreme droughts are a major determinant of ecosystem disturbance that impacts plant communities and feeds back into climate change through changes in plant functioning. However, the complex relationships between aboveground and belowground plant hydraulic traits and their role in governing plant responses to drought are not fully understood. In this study, we use a model, the Functionally Assembled Terrestrial Ecosystem Simulator in a configuration that includes plant hydraulics (FATES-Hydro), to investigate ecosystem responses to the 2012–2015 California drought in comparison with observations at a site in the southern Sierra Nevada that experienced widespread tree mortality during this drought. We conduct a sensitivity analysis to explore how different plant water sourcing and hydraulic strategies lead to differential responses during normal and drought conditions. The analysis shows the following. Deep roots that sustain productivity through the dry season are needed for the model to capture observed seasonal cycles of evapotranspiration (ET) and gross primary productivity (GPP) in normal years, and deep-rooted strategies are nonetheless subject to large reductions in ET and GPP when the deep soil reservoir is depleted during extreme droughts, in agreement with observations. Risky stomatal strategies lead to greater productivity during normal years as compared to safer stomatal control, but they also lead to a high risk of xylem embolism during the 2012–2015 drought. For a given stand density, stomatal and xylem traits have a stronger impact on plant water status than on ecosystem-level fluxes. Our study highlights the significance of resolving plant water sourcing strategies to represent drought impacts on plants and consequent feedbacks in models.

Funder

U.S. Department of Energy

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3