The dynamics of external water conduction in the dryland moss Syntrichia

Author:

Jauregui-Lazo Javier12,Wilson Marielle13,Mishler Brent D1

Affiliation:

1. Department of Integrative Biology, and University and Jepson Herbaria, 1001 Valley Life Sciences Building, University of California, Berkeley , CA 94720-2465 , USA

2. Department of Plant Biology, and Genome Center, University of California , Davis, CA 95618 , USA

3. Department of Botany, University of British Columbia , Vancouver, BC , Canada

Abstract

Abstract Syntrichia relies on external water conduction for photosynthesis, survival, and reproduction, a condition referred to as ectohydry. Capillarity spaces are abundant in Syntrichia, but the link between function and morphology is complex. The aim of this study was to provide a better understanding of species-specific morphological traits underlying the functions of water conduction and storage. We used an environmental scanning electron microscope and confocal microscopy for observing anatomical characters in the leaves of Syntrichia species. We also measured hydration/dehydration curves to understand the rate of conduction and dehydration by experimental approaches. Syntrichia is an ectohydric moss that can externally transport and store water from the base of the stem using capillary action. We propose a new framework to study ectohydric capabilities, which incorporates three morphological scales and the timing of going from completely dehydrated to fully hydrated. Characters of interest in this model include cell anatomy (papillae development, hyaline basal cells and laminar cells), architecture of the stem (concavity and orientation) and whole clump characteristics (density of stems). We report significant variations in the speed of conduction, water holding capacity and hydration associated with each species studied (11 in total). All Syntrichia species are capable of external water conduction and storage, but the relevant traits differ among species. These results help to understand potential evolutionary and ecological trade-offs among speed of water conduction, water holding capacity, ontogeny, and differing habitat requirements. An integrative view of ectohydry in Syntrichia contributes to understanding the water relationships of mosses.

Publisher

Oxford University Press (OUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3