Water exchange of the forest ecosystems epigeic bryophytes depending on changes of the structural and functional organization of their turfs and the influence of local growth environmental conditions

Author:

,Lobachevska OksanaORCID,Karpinets LyudmylaORCID,

Abstract

Background. Moss cover plays a decisive role in increasing soil moisture in forest ecosystems. Bryophytes with high water content can significantly reduce water evaporation from the soil surface and retain it for an extended time. Under the influence of environmental conditions, mosses change the shape and organization of moss turfs thus regulating the efficiency of moisture absorption and retaining. Therefore, it is essential to establish the differences in the water exchange strategy of epigeic dominant moss species depending on the environmental conditions in reserved and anthropogenically disturbed forest ecosystems. Materials and Methods. The research was carried out using the dominant epigeic, typical forest moss species Plagiomnium cuspidatum (Hedw.) T. J. Kop. and P. ellipticum (Brid.) T. J. Kop. from experimental plots of forest ecosystems, which differed in water and temperature regimes and light intensity. We determined the peculiarities of the influence of adaptations of moss turf morphological structure, individual plant’s physiological functional traits, and their metabolic osmoprotective changes based on the leading indicators of their water exchange (coefficients of water retention, water recovery, and drought resistance). Results. It was established that humidity and light intensity in forest ecosystems changed the shape and organization of moss turfs, i.e., the height of individual shoots in the turf and the density and size of leaves. The predominance of the generative or vegetative type of moss reproduction led to significant changes in the morphology of shoots, physiological functional traits of plants, and the density of the turf structure, which was regulated due to the increase in airstream turbulence and wind penetration, absorption and evaporation of water. The hydration of moss tissues was maintained due to the rise in the total carbohydrate content as well as the soluble fraction content primarily in the vegetative shoots. Conclusions. Mosses adapted to variable microclimatic conditions of forest ecosystems due to endohydricity and water retention mechanisms in external capillary spaces, i.e., changes in height, shape, and density of turfs, shoot morphology, various ratios of fertile to sterile plants, and their physiological functional traits. The internal regulation of water potential of cells was ensured by an increased concentration of osmoprotectors (carbohydrates, primarily their soluble fraction).

Publisher

Ivan Franko National University of Lviv

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3