Effects of population size change on the genetics of adaptation following an abrupt change in environment

Author:

McDonough Yasmine1,Connallon Tim1ORCID

Affiliation:

1. School of Biological Sciences, Monash University , Clayton, VIC , Australia

Abstract

Abstract Since the rediscovery of Mendelian genetics over a century ago, there has been much debate about the evolutionary importance of mutations with large phenotypic effects. While population genetic models predict that large-effect mutations will typically contribute to adaptation following an abrupt change in environment, the prediction applies to populations of stable size and overlooks the effects of population size change on adaptation (e.g., population decline following habitat loss; growth during range expansion). We evaluate the phenotypic and fitness effects of mutations contributing to adaptation immediately following an abrupt environmental shift that alters both selection and population size dynamics. We show that large-effect mutations are likely to contribute to adaptation in populations declining to a new carrying capacity, somewhat smaller-effect mutations contribute to evolutionary rescue, and small-effect mutations predominate in growing populations. We also show that the relative contributions of positively selected and overdominant mutations to adaptation depend on interactions between the phenotypic effect size distribution for new mutations and the specific form of population size change during adaptation (i.e., growth, decline, or evolutionary rescue). Our results illustrate how population size dynamics can shape the genetic basis of adaptation, which should motivate empirical comparisons of populations adapting in different demographic contexts.

Publisher

Oxford University Press (OUP)

Subject

General Agricultural and Biological Sciences,Genetics,Ecology, Evolution, Behavior and Systematics

Reference66 articles.

1. Are mutations usually deleterious? A perspective on the fitness effects of mutation accumulation;Bao;Evolutionary Ecology,2022

2. Polygenic adaptation: A unifying framework to understand positive selection;Barghi;Nature Reviews Genetics,2020

3. The “New Synthesis.”;Barton;Proceedings of the National Academy of Sciences of the United States of America,2022

4. Large haploblocks underlie rapid adaptation in an invasive weed Ambrosia artemisiifolia;Battlay;Nature Communications,2023

5. Evolutionary rescue;Bell;Annual Review of Ecology, Evolution, and Systematics,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3