Early diversification of avian limb morphology and the role of modularity in the locomotor evolution of crown birds

Author:

Eliason Chad M1,Proffitt James V23,Clarke Julia A2

Affiliation:

1. Grainger Bioinformatics Center, The Field Museum of Natural History , Chicago, IL , United States

2. Jackson School of Geosciences, The University of Texas at Austin , Austin, TX , United States

3. Department of Pathology & Anatomical Sciences, Missouri University , Columbia, MO , United States

Abstract

AbstractHigh disparity among avian forelimb and hind limb segments in crown birds relative to non-avialan theropod dinosaurs, potentially driven by the origin of separate forelimb and hind limb locomotor modules, has been linked to the evolution of diverse avian locomotor behaviors. However, this hypothesized relationship has rarely been quantitatively investigated in a phylogenetic framework. We assessed the relationship between the evolution of limb morphology and locomotor behavior by comparing a numerical proxy for locomotor disparity to morphospace sizes derived from a dataset of 1,241 extant species. We then estimated how limb disparity accumulated during the crown avian radiation. Lastly, we tested whether limb segments evolved independently between each limb module using phylogenetically informed regressions. Hind limb disparity increased significantly with locomotor disparity after accounting for clade age and species richness. We found that forelimb disparity accumulated rapidly early in avian evolution, whereas hind limb disparity accumulated later, in more recent divergences. We recovered little support for strong correlations between forelimb and hind limb morphology. We posit that these findings support independent evolution of locomotor modules that enabled the striking morphological and behavioral disparity of extant birds.

Publisher

Oxford University Press (OUP)

Subject

General Agricultural and Biological Sciences,Genetics,Ecology, Evolution, Behavior and Systematics

Reference90 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3