Wing Shape in Waterbirds: Morphometric Patterns Associated with Behavior, Habitat, Migration, and Phylogenetic Convergence

Author:

Baumgart Stephanie L1ORCID,Sereno Paul C12,Westneat Mark W12

Affiliation:

1. Department of Organismal Biology and Anatomy, University of Chicago, 1027 E, 57th St, Chicago, IL 60637, USA

2. Committee on Evolutionary Biology, University of Chicago, 1027 E, 57th St, Chicago, IL 60637, USA

Abstract

Synopsis Wing shape plays a critical role in flight function in birds and other powered fliers and has been shown to be correlated with flight performance, migratory distance, and the biomechanics of generating lift during flight. Avian wing shape and flight mechanics have also been shown to be associated with general foraging behavior and habitat choice. We aim to determine if wing shape in waterbirds, a functionally and ecologically diverse assemblage united by their coastal and aquatic habitats, is correlated with various functional and ecological traits. We applied geometric morphometric approaches to the spread wings of a selection of waterbirds to search for evolutionary patterns between wing shape and foraging behavior, habitat, and migratory patterns. We found strong evidence of convergent evolution of high and low aspect ratio wing shapes in multiple clades. Foraging behavior also consistently exhibits strong evolutionary correlations with wing shape. Habitat, migration, and flight style, in contrast, do not exhibit significant correlation with wing shape in waterbirds. Although wing shape is critical to aerial flight function, its relationship to habitat and periodic locomotor demands such as migration is complex.

Funder

US Department of Education's Graduate Assistance in Areas of National Need in Integrative Neuromechanics fellowship

National Science Foundation

Publisher

Oxford University Press (OUP)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3