Phenotypic plasticity in tropical butterflies is linked to climatic seasonality on a macroevolutionary scale

Author:

Halali Sridhar12ORCID,Brakefield Paul M1,Brattström Oskar134

Affiliation:

1. Department of Zoology, University of Cambridge , Cambridge , United Kingdom

2. Department of Biology, Lund University , Lund , Sweden

3. School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow , Glasgow , United Kingdom

4. African Butterfly Research Institute , Nairobi , Kenya

Abstract

Abstract Phenotypic plasticity can be adaptive in fluctuating environments by providing rapid environment–phenotype matching and this applies particularly in seasonal environments. African Bicyclus butterflies have repeatedly colonized seasonal savannahs from ancestral forests around the late Miocene, and many species now exhibit seasonal polyphenism. On a macroevolutionary scale, it can be expected that savannah species will exhibit higher plasticity because of experiencing stronger environmental seasonality than forest species. We quantified seasonality using environmental niche modeling and surveyed the degree of plasticity in a key wing pattern element (eyespot size) using museum specimens. We showed that species occurring in highly seasonal environments display strong plasticity, while species in less seasonal or aseasonal environments exhibit surprisingly variable degrees of plasticity, including strong to no plasticity. Furthermore, eyespot size plasticity has a moderate phylogenetic signal and the ancestral Bicyclus likely exhibited some degree of plasticity. We propose hypotheses to explain the range of plasticity patterns seen in less seasonal environments and generate testable predictions for the evolution of plasticity in Bicyclus. Our study provides one of the most compelling cases showing links between seasonality and phenotypic plasticity on a macroevolutionary scale and the potential role of plasticity in facilitating the colonization of novel environments.

Funder

European Research Council

John Templeton Foundation

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3