Cell type–specific interpretation of noncoding variants using deep learning–based methods

Author:

Sindeeva Maria1ORCID,Chekanov Nikolay1ORCID,Avetisian Manvel1ORCID,Shashkova Tatiana I1ORCID,Baranov Nikita1ORCID,Malkin Elian1,Lapin Alexander1,Kardymon Olga1ORCID,Fishman Veniamin123ORCID

Affiliation:

1. AIRI, Moscow , 121170 , Russia

2. Institute of Cytology and Genetics , Novosibirsk, 630099 , Russia

3. Novosibirsk State University , Novosibirsk, 630090 , Russia

Abstract

AbstractInterpretation of noncoding genomic variants is one of the most important challenges in human genetics. Machine learning methods have emerged recently as a powerful tool to solve this problem. State-of-the-art approaches allow prediction of transcriptional and epigenetic effects caused by noncoding mutations. However, these approaches require specific experimental data for training and cannot generalize across cell types where required features were not experimentally measured. We show here that available epigenetic characteristics of human cell types are extremely sparse, limiting those approaches that rely on specific epigenetic input. We propose a new neural network architecture, DeepCT, which can learn complex interconnections of epigenetic features and infer unmeasured data from any available input. Furthermore, we show that DeepCT can learn cell type–specific properties, build biologically meaningful vector representations of cell types, and utilize these representations to generate cell type–specific predictions of the effects of noncoding variations in the human genome.

Funder

Artificial Intelligence Research Institute

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Health Informatics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3