Transcriptome annotation in the cloud: complexity, best practices, and cost

Author:

Alvarez Roberto Vera1ORCID,Mariño-Ramírez Leonardo1ORCID,Landsman David1ORCID

Affiliation:

1. Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, NIH, 9000 Rockville Pike, Bethesda, MD 20890, USA

Abstract

Abstract Background The NIH Science and Technology Research Infrastructure for Discovery, Experimentation, and Sustainability (STRIDES) initiative provides NIH-funded researchers cost-effective access to commercial cloud providers, such as Amazon Web Services (AWS) and Google Cloud Platform (GCP). These cloud providers represent an alternative for the execution of large computational biology experiments like transcriptome annotation, which is a complex analytical process that requires the interrogation of multiple biological databases with several advanced computational tools. The core components of annotation pipelines published since 2012 are BLAST sequence alignments using annotated databases of both nucleotide or protein sequences almost exclusively with networked on-premises compute systems. Findings We compare multiple BLAST sequence alignments using AWS and GCP. We prepared several Jupyter Notebooks with all the code required to submit computing jobs to the batch system on each cloud provider. We consider the consequence of the number of query transcripts in input files and the effect on cost and processing time. We tested compute instances with 16, 32, and 64 vCPUs on each cloud provider. Four classes of timing results were collected: the total run time, the time for transferring the BLAST databases to the instance local solid-state disk drive, the time to execute the CWL script, and the time for the creation, set-up, and release of an instance. This study aims to establish an estimate of the cost and compute time needed for the execution of multiple BLAST runs in a cloud environment. Conclusions We demonstrate that public cloud providers are a practical alternative for the execution of advanced computational biology experiments at low cost. Using our cloud recipes, the BLAST alignments required to annotate a transcriptome with ∼500,000 transcripts can be processed in <2 hours with a compute cost of ∼$200–$250. In our opinion, for BLAST-based workflows, the choice of cloud platform is not dependent on the workflow but, rather, on the specific details and requirements of the cloud provider. These choices include the accessibility for institutional use, the technical knowledge required for effective use of the platform services, and the availability of open source frameworks such as APIs to deploy the workflow.

Funder

U.S. National Library of Medicine

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Health Informatics

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3