IntelliGenes: Interactive and user-friendly multimodal AI/ML application for biomarker discovery and predictive medicine

Author:

Narayanan Rishabh1,DeGroat William1,Mendhe Dinesh1,Abdelhalim Habiba1,Ahmed Zeeshan12ORCID

Affiliation:

1. Rutgers Institute for Health, Health Care Policy and Aging Research, The State University of New Jersey , New Brunswick, 08901, NJ, United States

2. Department of Medicine, Division of Cardiovascular Disease and Hypertension, Robert Wood Johnson Medical School , New Brunswick, NJ, 08901, United States

Abstract

Abstract Artificial intelligence (AI) and machine learning (ML) have advanced in several areas and fields of life; however, its progress in the field of multi-omics is not matching the levels others have attained. Challenges include but are not limited to the handling and analysis of high volumes of complex multi-omics data, and the expertise needed to implement and execute AI/ML approaches. In this article, we present IntelliGenes, an interactive, customizable, cross-platform, and user-friendly AI/ML application for multi-omics data exploration to discover novel biomarkers and predict rare, common, and complex diseases. The implemented methodology is based on a nexus of conventional statistical techniques and cutting-edge ML algorithms, which outperforms single algorithms and result in enhanced accuracy. The interactive and cross-platform graphical user interface of IntelliGenes is divided into three main sections: (i) Data Manager, (ii) AI/ML Analysis, and (iii) Visualization. Data Manager supports the user in loading and customizing the input data and list of existing biomarkers. AI/ML Analysis allows the user to apply default combinations of statistical and ML algorithms, as well as customize and create new AI/ML pipelines. Visualization provides options to interpret a diverse set of produced results, including performance metrics, disease predictions, and various charts. The performance of IntelliGenes has been successfully tested at variable in-house and peer-reviewed studies, and was able to correctly classify individuals as patients and predict disease with high accuracy. It stands apart primarily in its simplicity in use for nontechnical users and its emphasis on generating interpretable visualizations. We have designed and implemented IntelliGenes in a way that a user with or without computational background can apply AI/ML approaches to discover novel biomarkers and predict diseases.

Funder

Department of Medicine, Robert Wood Johnson Medical School, and Rutgers Institute for Health, Health Care Policy, and Aging Research at Rutgers

State University of New Jersey

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3