The intersectional genetics landscape for humans

Author:

Macedo Andre1ORCID,Gontijo Alisson M1ORCID

Affiliation:

1. Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua do Instituto Bacteriológico 5, 1150–190, Lisbon, Portugal

Abstract

ABSTRACT Background The human body is made up of hundreds—perhaps thousands—of cell types and states, most of which are currently inaccessible genetically. Intersectional genetic approaches can increase the number of genetically accessible cells, but the scope and safety of these approaches have not been systematically assessed. A typical intersectional method acts like an “AND" logic gate by converting the input of 2 or more active, yet unspecific, regulatory elements (REs) into a single cell type specific synthetic output. Results Here, we systematically assessed the intersectional genetics landscape of the human genome using a subset of cells from a large RE usage atlas (Functional ANnoTation Of the Mammalian genome 5 consortium, FANTOM5) obtained by cap analysis of gene expression sequencing (CAGE-seq). We developed the heuristics and algorithms to retrieve and quality-rank “AND" gate intersections. Of the 154 primary cell types surveyed, >90% can be distinguished from each other with as few as 3 to 4 active REs, with quantifiable safety and robustness. We call these minimal intersections of active REs with cell-type diagnostic potential “versatile entry codes" (VEnCodes). Each of the 158 cancer cell types surveyed could also be distinguished from the healthy primary cell types with small VEnCodes, most of which were robust to intra- and interindividual variation. Methods for the cross-validation of CAGE-seq–derived VEnCodes and for the extraction of VEnCodes from pooled single-cell sequencing data are also presented. Conclusions Our work provides a systematic view of the intersectional genetics landscape in humans and demonstrates the potential of these approaches for future gene delivery technologies.

Funder

Fundação para a Ciência e Tecnologia

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Health Informatics

Reference63 articles.

1. Morphological complexity increase in metazoans;Valentine;Paleobiology,1994

2. Chance and necessity: the evolution of morphological complexity and diversity;Carroll;Nature,2001

3. An atlas of active enhancers across human cell types and tissues;Andersson;Nature,2014

4. A promoter-level mammalian expression atlas;FANTOM (Functional ANnoTation Of the Mammalian genome) Consortium and the RIKEN PMI (Preventive Medicine & Diagnosis Innovation Program) and CLST (DGT) (Center for Life Science Technologies, Division of Genomic Technologies),;Nature,2014

5. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets;Macosko;Cell,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3