MaRe: Processing Big Data with application containers on Apache Spark

Author:

Capuccini Marco12ORCID,Dahlö Martin234,Toor Salman1,Spjuth Ola2ORCID

Affiliation:

1. Department of Information Technology, Uppsala University, Box 337, 75105, Uppsala, Sweden

2. Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 751 24, Uppsala, Sweden

3. Science for Life Laboratory, Uppsala University, Box 591, 751 24, Uppsala, Sweden

4. Uppsala Multidisciplinary Center for Advanced Computational Science, Uppsala University, Box 337, 75105, Uppsala, Sweden

Abstract

AbstractBackgroundLife science is increasingly driven by Big Data analytics, and the MapReduce programming model has been proven successful for data-intensive analyses. However, current MapReduce frameworks offer poor support for reusing existing processing tools in bioinformatics pipelines. Furthermore, these frameworks do not have native support for application containers, which are becoming popular in scientific data processing.ResultsHere we present MaRe, an open source programming library that introduces support for Docker containers in Apache Spark. Apache Spark and Docker are the MapReduce framework and container engine that have collected the largest open source community; thus, MaRe provides interoperability with the cutting-edge software ecosystem. We demonstrate MaRe on 2 data-intensive applications in life science, showing ease of use and scalability.ConclusionsMaRe enables scalable data-intensive processing in life science with Apache Spark and application containers. When compared with current best practices, which involve the use of workflow systems, MaRe has the advantage of providing data locality, ingestion from heterogeneous storage systems, and interactive processing. MaRe is generally applicable and available as open source software.

Funder

Horizon 2020

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Health Informatics

Reference77 articles.

1. Big data: astronomical or genomical?;Stephens;PLoS Biol,2015

2. At the intersection of proteomics and big data science;Foster;Clin Chem,2017

3. PhenoMeNal: Processing and analysis of metabolomics data in the cloud;Peters;Gigascience,2018

4. Bioimage informatics: a new area of engineering biology;Peng;Bioinformatics,2008

5. Big Data in drug discovery;Brown,2018

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3