Construction of a chromosome-scale long-read reference genome assembly for potato

Author:

Pham Gina M1ORCID,Hamilton John P1ORCID,Wood Joshua C1ORCID,Burke Joseph T1ORCID,Zhao Hainan1,Vaillancourt Brieanne1ORCID,Ou Shujun2ORCID,Jiang Jiming134ORCID,Buell C Robin145ORCID

Affiliation:

1. Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA

2. Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 2200 Osborne Dr, Ames, IA 50011, USA

3. Department of Horticulture, Michigan State University, 1066 Bogue St, East Lansing, MI 48824, USA

4. MSU AgBioResearch, Michigan State University, 446 W. Circle Drive, East Lansing, MI 48824, USA

5. Plant Resilience Institute, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA

Abstract

Abstract Background Worldwide, the cultivated potato, Solanum tuberosum L., is the No. 1 vegetable crop and a critical food security crop. The genome sequence of DM1–3 516 R44, a doubled monoploid clone of S. tuberosum Group Phureja, was published in 2011 using a whole-genome shotgun sequencing approach with short-read sequence data. Current advanced sequencing technologies now permit generation of near-complete, high-quality chromosome-scale genome assemblies at minimal cost. Findings Here, we present an updated version of the DM1–3 516 R44 genome sequence (v6.1) using Oxford Nanopore Technologies long reads coupled with proximity-by-ligation scaffolding (Hi-C), yielding a chromosome-scale assembly. The new (v6.1) assembly represents 741.6 Mb of sequence (87.8%) of the estimated 844 Mb genome, of which 741.5 Mb is non-gapped with 731.2 Mb anchored to the 12 chromosomes. Use of Oxford Nanopore Technologies full-length complementary DNA sequencing enabled annotation of 32,917 high-confidence protein-coding genes encoding 44,851 gene models that had a significantly improved representation of conserved orthologs compared with the previous annotation. The new assembly has improved contiguity with a 595-fold increase in N50 contig size, 99% reduction in the number of contigs, a 44-fold increase in N50 scaffold size, and an LTR Assembly Index score of 13.56, placing it in the category of reference genome quality. The improved assembly also permitted annotation of the centromeres via alignment to sequencing reads derived from CENH3 nucleosomes. Conclusions Access to advanced sequencing technologies and improved software permitted generation of a high-quality, long-read, chromosome-scale assembly and improved annotation dataset for the reference genotype of potato that will facilitate research aimed at improving agronomic traits and understanding genome evolution.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3