Toward a scalable framework for reproducible processing of volumetric, nanoscale neuroimaging datasets

Author:

Johnson Erik C1ORCID,Wilt Miller1,Rodriguez Luis M1,Norman-Tenazas Raphael1,Rivera Corban1,Drenkow Nathan1,Kleissas Dean1,LaGrow Theodore J2,Cowley Hannah P1,Downs Joseph1,K. Matelsky Jordan1,J. Hughes Marisa1,P. Reilly Elizabeth1,A. Wester Brock1,L. Dyer Eva23,P. Kording Konrad4,R. Gray-Roncal William1

Affiliation:

1. Research And Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd., Laurel, MD, 20723 USA

2. School of Electrical & Computer Engineering, Georgia Institute of Technology, 777 Atlantic Dr. NW, Atlanta, GA, 30332 USA

3. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr., Atlanta, GA, 30332 USA

4. Department of Biomedical Engineering, University of Pennsylvania, 210 South 33rd St., Philadelphia, PA, 19104 USA

Abstract

Abstract Background Emerging neuroimaging datasets (collected with imaging techniques such as electron microscopy, optical microscopy, or X-ray microtomography) describe the location and properties of neurons and their connections at unprecedented scale, promising new ways of understanding the brain. These modern imaging techniques used to interrogate the brain can quickly accumulate gigabytes to petabytes of structural brain imaging data. Unfortunately, many neuroscience laboratories lack the computational resources to work with datasets of this size: computer vision tools are often not portable or scalable, and there is considerable difficulty in reproducing results or extending methods. Results We developed an ecosystem of neuroimaging data analysis pipelines that use open-source algorithms to create standardized modules and end-to-end optimized approaches. As exemplars we apply our tools to estimate synapse-level connectomes from electron microscopy data and cell distributions from X-ray microtomography data. To facilitate scientific discovery, we propose a generalized processing framework, which connects and extends existing open-source projects to provide large-scale data storage, reproducible algorithms, and workflow execution engines. Conclusions Our accessible methods and pipelines demonstrate that approaches across multiple neuroimaging experiments can be standardized and applied to diverse datasets. The techniques developed are demonstrated on neuroimaging datasets but may be applied to similar problems in other domains.

Funder

National Institute of Mental Health

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Health Informatics

Reference59 articles.

1. The big data challenges of connectomics;Lichtman;Nat Neurosci,2014

2. Array tomography: High-resolution three-dimensional immunofluorescence;Micheva;Cold Spring Harb Protoc,2010

3. CLARITY for mapping the nervous system;Chung;Nat Methods,2013

4. Quantifying mesoscale neuroanatomy using X-ray microtomography;Dyer;eNeuro,2017

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Organoid intelligence (OI): the new frontier in biocomputing and intelligence-in-a-dish;Frontiers in Science;2023-02-28

2. SyConn2: dense synaptic connectivity inference for volume electron microscopy;Nature Methods;2022-10-24

3. CONFIRMS: A Toolkit for Scalable, Black Box Connectome Assessment and Investigation;2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2021-11-01

4. An Integrated Toolkit for Extensible and Reproducible Neuroscience;2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2021-11-01

5. Toward a scalable framework for reproducible processing of volumetric, nanoscale neuroimaging datasets;GigaScience;2020-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3