Accelerated deciphering of the genetic architecture of agricultural economic traits in pigs using a low-coverage whole-genome sequencing strategy

Author:

Yang Ruifei1,Guo Xiaoli1,Zhu Di1,Tan Cheng2,Bian Cheng1,Ren Jiangli1,Huang Zhuolin1,Zhao Yiqiang1,Cai Gengyuan2,Liu Dewu2,Wu Zhenfang2,Wang Yuzhe13,Li Ning1,Hu Xiaoxiang1ORCID

Affiliation:

1. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan west road, Haidian district, Beijing 100193, China

2. National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, No. 483 Wushan road, Tianhe district, Guangdong 510640, China

3. National Research Facility for Phenotypic and Genotypic Analysis of Model Animals (Beijing), China Agricultural University, No. 2 Yuanmingyuan west road, Haidian district, Beijing 100193, China

Abstract

Abstract Background Uncovering the genetic architecture of economic traits in pigs is important for agricultural breeding. However, high-density haplotype reference panels are unavailable in most agricultural species, limiting accurate genotype imputation in large populations. Moreover, the infinitesimal model of quantitative traits implies that weak association signals tend to be spread across most of the genome, further complicating the genetic analysis. Hence, there is a need to develop new methods for sequencing large cohorts without large reference panels. Results We describe a Tn5-based highly accurate, cost- and time-efficient, low-coverage sequencing method to obtain 11.3 million whole-genome single-nucleotide polymorphisms in 2,869 Duroc boars at a mean depth of 0.73×. On the basis of these single-nucleotide polymorphisms, a genome-wide association study was performed, resulting in 14 quantitative trait loci (QTLs) for 7 of 21 important agricultural traits in pigs. These QTLs harbour genes, such as ABCD4 for total teat number and HMGA1 for back fat thickness, and provided a starting point for further investigation. The inheritance models of the different traits varied greatly. Most follow the minor-polygene model, but this can be attributed to different reasons, such as the shaping of genetic architecture by artificial selection for this population and sufficiently interconnected minor gene regulatory networks. Conclusions Genome-wide association study results for 21 important agricultural traits identified 14 QTLs/genes and showed their genetic architectures, providing guidance for genetic improvement harnessing genomic features. The Tn5-based low-coverage sequencing method can be applied to large-scale genome studies for any species without a good reference panel and can be used for agricultural breeding.

Funder

National Transgenic Grand Project

Program of the Ministry of Agriculture of China

Science and Technology Innovation Strategy Projects of Guangdong Province

Guangdong Academician Workstation

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3