Rapid development of cloud-native intelligent data pipelines for scientific data streams using the HASTE Toolkit

Author:

Blamey Ben1ORCID,Toor Salman1ORCID,Dahlö Martin23ORCID,Wieslander Håkan1ORCID,Harrison Philip J23ORCID,Sintorn Ida-Maria134ORCID,Sabirsh Alan5ORCID,Wählby Carolina13ORCID,Spjuth Ola23ORCID,Hellander Andreas1ORCID

Affiliation:

1. Department of Information Technology, Uppsala University, Lägerhyddsvägen 2, 75237 Uppsala, Sweden

2. Department of Pharmaceutical Biosciences, Uppsala University, Husargatan 3, 75237, Uppsala, Sweden

3. Science for Life Laboratory, Uppsala University, Husargatan 3, 75237 Uppsala, Sweden

4. Vironova AB, Gävlegatan 22, 11330 Stockholm, Sweden

5. Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden

Abstract

Abstract Background Large streamed datasets, characteristic of life science applications, are often resource-intensive to process, transport and store. We propose a pipeline model, a design pattern for scientific pipelines, where an incoming stream of scientific data is organized into a tiered or ordered “data hierarchy". We introduce the HASTE Toolkit, a proof-of-concept cloud-native software toolkit based on this pipeline model, to partition and prioritize data streams to optimize use of limited computing resources. Findings In our pipeline model, an “interestingness function” assigns an interestingness score to data objects in the stream, inducing a data hierarchy. From this score, a “policy” guides decisions on how to prioritize computational resource use for a given object. The HASTE Toolkit is a collection of tools to adopt this approach. We evaluate with 2 microscopy imaging case studies. The first is a high content screening experiment, where images are analyzed in an on-premise container cloud to prioritize storage and subsequent computation. The second considers edge processing of images for upload into the public cloud for real-time control of a transmission electron microscope. Conclusions Through our evaluation, we created smart data pipelines capable of effective use of storage, compute, and network resources, enabling more efficient data-intensive experiments. We note a beneficial separation between scientific concerns of data priority, and the implementation of this behaviour for different resources in different deployment contexts. The toolkit allows intelligent prioritization to be `bolted on' to new and existing systems – and is intended for use with a range of technologies in different deployment scenarios.

Funder

Sjögren’s Syndrome Foundation

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Health Informatics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3