Generation and application of pseudo–long reads for metagenome assembly

Author:

Sim Mikang1ORCID,Lee Jongin1ORCID,Wy Suyeon1ORCID,Park Nayoung1ORCID,Lee Daehwan1ORCID,Kwon Daehong1ORCID,Kim Jaebum1ORCID

Affiliation:

1. Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea

Abstract

Abstract Background Metagenomic assembly using high-throughput sequencing data is a powerful method to construct microbial genomes in environmental samples without cultivation. However, metagenomic assembly, especially when only short reads are available, is a complex and challenging task because mixed genomes of multiple microorganisms constitute the metagenome. Although long read sequencing technologies have been developed and have begun to be used for metagenomic assembly, many metagenomic studies have been performed based on short reads because the generation of long reads requires higher sequencing cost than short reads. Results In this study, we present a new method called PLR-GEN. It creates pseudo–long reads from metagenomic short reads based on given reference genome sequences by considering small sequence variations existing in individual genomes of the same or different species. When applied to a mock community data set in the Human Microbiome Project, PLR-GEN dramatically extended short reads in length of 101 bp to pseudo–long reads with N50 of 33 Kbp and 0.4% error rate. The use of these pseudo–long reads generated by PLR-GEN resulted in an obvious improvement of metagenomic assembly in terms of the number of sequences, assembly contiguity, and prediction of species and genes. Conclusions PLR-GEN can be used to generate artificial long read sequences without spending extra sequencing cost, thus aiding various studies using metagenomes.

Funder

Konkuk University Researcher Fund

Ministry of Science and ICT of Korea

Ministry of Education of Korea

Rural Development Administration of Korea

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3