USP53 activated by H3K27 acetylation regulates cell viability, apoptosis and metabolism in esophageal carcinoma via the AMPK signaling pathway

Author:

Cheng Wei1,Tang Yong2,Tong Xiaobin1,Zhou Qin1,Xie Jingrong1,Wang Jinlong1,Han Yun1,Ta Na1,Ye Zhou3ORCID

Affiliation:

1. Department of Hematologic and Oncology, The Center Hospital of Karamay City, Xinjiang Clinical Research Center for precision medicine of digestive system tumor, Karamay, China

2. Department of Gastroenterology, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, Chinaand

3. Department of General surgery, The Center Hospital of Karamay City, Xinjiang Clinical Research Center for precision medicine of digestive system tumor, Karamay, China

Abstract

Abstract Esophageal carcinoma (ESCA) is a leading cause of cancer death worldwide, despite an overall decline in the incidence of new cases. However, knowledge of gene expression signatures for risk and prognosis stratification of ESCA is inadequate. Thus, identifying novel molecular biomarkers and therapeutic targets for ESCA might improve its prognosis and treatment. The current study investigated the role of ubiquitin-specific peptidase 53 (USP53), a member of the USP family that exhibits deubiquitinating activity, in ESCA and showed that USP53 is downregulated in ESCA tissues, indicating poor prognosis. USP53 suppresses the proliferation and growth of ESCA cells in vitro and in vivo, whereas its knockdown exerts opposite effects. AMP-activated protein kinase inhibitor reverses the effects of USP53 knockdown. USP53 also inhibits glycolysis, oxidative metabolism and mitochondrial dynamics. H3K27 acetylation increases USP53 expression by binding to its promoter region. Our study reveals that USP53 is activated by H3K27 acetylation and suppresses ESCA progression by regulating cell growth and metabolism. USP53 is therefore a promising target for ESCA treatment.

Funder

Xinjiang Uygur Autonomous Region Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3