Aiming off the target: recycling target capture sequencing reads for investigating repetitive DNA

Author:

Costa Lucas1,Marques André2,Buddenhagen Chris3,Thomas William Wayt4,Huettel Bruno5,Schubert Veit6ORCID,Dodsworth Steven7,Houben Andreas6,Souza Gustavo1,Pedrosa-Harand Andrea1

Affiliation:

1. Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife-PE, Brazil

2. Max Planck Institute for Plant Breeding Research, Cologne, Germany

3. AgResearch, Plant Functional Biology, Ruakura, New Zealand

4. New York Botanical Garden, Bronx, New York, NY, USA

5. Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany

6. Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany

7. School of Life Sciences, University of Bedfordshire, Luton, UK

Abstract

Abstract Background and Aims With the advance of high-throughput sequencing, reduced-representation methods such as target capture sequencing (TCS) emerged as cost-efficient ways of gathering genomic information, particularly from coding regions. As the off-target reads from such sequencing are expected to be similar to genome skimming (GS), we assessed the quality of repeat characterization in plant genomes using these data. Methods Repeat composition obtained from TCS datasets of five Rhynchospora (Cyperaceae) species were compared with GS data from the same taxa. In addition, a FISH probe was designed based on the most abundant satellite found in the TCS dataset of Rhynchospora cephalotes. Finally, repeat-based phylogenies of the five Rhynchospora species were constructed based on the GS and TCS datasets and the topologies were compared with a gene-alignment-based phylogenetic tree. Key Results All the major repetitive DNA families were identified in TCS, including repeats that showed abundances as low as 0.01 % in the GS data. Rank correlations between GS and TCS repeat abundances were moderately high (r = 0.58–0.85), increasing after filtering out the targeted loci from the raw TCS reads (r = 0.66–0.92). Repeat data obtained by TCS were also reliable in developing a cytogenetic probe of a new variant of the holocentromeric satellite Tyba. Repeat-based phylogenies from TCS data were congruent with those obtained from GS data and the gene-alignment tree. Conclusions Our results show that off-target TCS reads can be recycled to identify repeats for cyto- and phylogenomic investigations. Given the growing availability of TCS reads, driven by global phylogenomic projects, our strategy represents a way to recycle genomic data and contribute to a better characterization of plant biodiversity.

Funder

CAPES-PRINT

Conselho Nacional de Desenvolvimento Científico e Tecnologico

Publisher

Oxford University Press (OUP)

Subject

Plant Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3