Target capture and genome skimming for plant diversity studies

Author:

Pezzini Flávia Fonseca1ORCID,Ferrari Giada1ORCID,Forrest Laura L.1,Hart Michelle L.1,Nishii Kanae1,Kidner Catherine A.12

Affiliation:

1. Royal Botanic Garden Edinburgh Edinburgh United Kingdom

2. School of Biological Sciences University of Edinburgh Edinburgh United Kingdom

Abstract

AbstractRecent technological advances in long‐read high‐throughput sequencing and assembly methods have facilitated the generation of annotated chromosome‐scale whole‐genome sequence data for evolutionary studies; however, generating such data can still be difficult for many plant species. For example, obtaining high‐molecular‐weight DNA is typically impossible for samples in historical herbarium collections, which often have degraded DNA. The need to fast‐freeze newly collected living samples to conserve high‐quality DNA can be complicated when plants are only found in remote areas. Therefore, short‐read reduced‐genome representations, such as target capture and genome skimming, remain important for evolutionary studies. Here, we review the pros and cons of each technique for non‐model plant taxa. We provide guidance related to logistics, budget, the genomic resources previously available for the target clade, and the nature of the study. Furthermore, we assess the available bioinformatic analyses, detailing best practices and pitfalls, and suggest pathways to combine newly generated data with legacy data. Finally, we explore the possible downstream analyses allowed by the type of data generated using each technique. We provide a practical guide to help researchers make the best‐informed choice regarding reduced genome representation for evolutionary studies of non‐model plants in cases where whole‐genome sequencing remains impractical.

Publisher

Wiley

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3