Generative Artificial Intelligence: Enhancing Patient Education in Cardiovascular Imaging

Author:

Marey Ahmed1ORCID,Saad Abdelrahman M1ORCID,Killeen Benjamin DORCID,Gomez Catalina2ORCID,Tregubova Mariia3ORCID,Unberath Mathias2ORCID,Umair Muhammad4ORCID

Affiliation:

1. Alexandria University Faculty of Medicine , Alexandria, 21521, Egypt

2. Department of Computer Science, Laboratory for Computational Sensing and Robotics, Johns Hopkins University , Baltimore, MD, 21218, United States

3. Department of Radiology, Amosov National Institute of Cardiovascular Surgery , Kyiv, 02000, Ukraine

4. Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins Hospital , Baltimore, MD, 21205, United States

Abstract

Abstract Cardiovascular disease (CVD) is a major cause of mortality worldwide, especially in resource-limited countries with limited access to healthcare resources. Early detection and accurate imaging are vital for managing CVD, emphasizing the significance of patient education. Generative artificial intelligence (AI), including algorithms to synthesize text, speech, images, and combinations thereof given a specific scenario or prompt, offers promising solutions for enhancing patient education. By combining vision and language models, generative AI enables personalized multimedia content generation through natural language interactions, benefiting patient education in cardiovascular imaging. Simulations, chat-based interactions, and voice-based interfaces can enhance accessibility, especially in resource-limited settings. Despite its potential benefits, implementing generative AI in resource-limited countries faces challenges like data quality, infrastructure limitations, and ethical considerations. Addressing these issues is crucial for successful adoption. Ethical challenges related to data privacy and accuracy must also be overcome to ensure better patient understanding, treatment adherence, and improved healthcare outcomes. Continued research, innovation, and collaboration in generative AI have the potential to revolutionize patient education. This can empower patients to make informed decisions about their cardiovascular health, ultimately improving healthcare outcomes in resource-limited settings.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3