Affiliation:
1. Departament de Matemàtiques, Universitat de València, Campus de Burjassot, 46100 Burjassot, Spain
2. Departamento de Matemática, Universidade Federal de São Carlos, Caixa Postal 676, 13560-905, São Carlos, SP, Brazil
Abstract
AbstractLet $(X,0)$ be an isolated hypersurface singularity defined by $\phi \colon ({\mathbb{C}}^n,0)\to ({\mathbb{C}},0)$ and $f\colon ({\mathbb{C}}^n,0)\to{\mathbb{C}}$ such that the Bruce–Roberts number $\mu _{BR}(f,X)$ is finite. We first prove that $\mu _{BR}(f,X)=\mu (f)+\mu (\phi ,f)+\mu (X,0)-\tau (X,0)$, where $\mu $ and $\tau $ are the Milnor and Tjurina numbers respectively of a function or an isolated complete intersection singularity. Second, we show that the logarithmic characteristic variety $LC(X,0)$ is Cohen–Macaulay. Both theorems generalize the results of a previous paper by some of the authors, in which the hypersurface $(X,0)$ was assumed to be weighted homogeneous.
Funder
Ministerio de Ciencia e Innovación
Generalitat Valenciana
Fundação de Amparo à Pesquisa do Estado de São Paulo
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Publisher
Oxford University Press (OUP)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献