Author:
Lima-Pereira B. K.,Nuño-Ballesteros J. J.,Oréfice-Okamoto B.,Tomazella J. N.
Abstract
AbstractWe consider the relative Bruce–Roberts number $\mu _{\textrm {BR}}^{-}(f,\,X)$ of a function on an isolated hypersurface singularity $(X,\,0)$. We show that $\mu _{\textrm {BR}}^{-}(f,\,X)$ is equal to the sum of the Milnor number of the fibre $\mu (f^{-1}(0)\cap X,\,0)$ plus the difference $\mu (X,\,0)-\tau (X,\,0)$ between the Milnor and the Tjurina numbers of $(X,\,0)$. As an application, we show that the usual Bruce–Roberts number $\mu _{\textrm {BR}}(f,\,X)$ is equal to $\mu (f)+\mu _{\textrm {BR}}^{-}(f,\,X)$. We also deduce that the relative logarithmic characteristic variety $LC(X)^{-}$, obtained from the logarithmic characteristic variety $LC(X)$ by eliminating the component corresponding to the complement of $X$ in the ambient space, is Cohen–Macaulay.
Publisher
Cambridge University Press (CUP)
Reference13 articles.
1. Theory of logarithmic differential forms and logarithmic vector fields;Saito;J. Fac. Sci. Univ. Tokyo Sect. 1A Math,1980
2. A generalized Koszul complex. II. Depth and multiplicity
3. 13. Tajima, S. , On polar varieties, logarithmic vector fields and holonomic D-modules, Recent development of micro-local analysis for the theory of asymptotic analysis, 41–51, RIMS Kôkyûroku Bessatsu, B40 (Research Institute for Mathematical Sciences (RIMS), Kyoto 2013)
4. 7. Greuel, G. M. and Pfister, G. , A singular introduction to commutative algebra. Second extended edition. With contributions by Olaf Bachmann, Christoph Lossen and Hans Schönemann (Springer, Berlin, 2008)
5. Mixed Bruce–Roberts numbers
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献