Determining prescriptions in electronic healthcare record data: methods for development of standardized, reproducible drug codelists

Author:

Graul Emily L1ORCID,Stone Philip W12ORCID,Massen Georgie M2ORCID,Hatam Sara3ORCID,Adamson Alexander12ORCID,Denaxas Spiros45ORCID,Peters Nicholas S2ORCID,Quint Jennifer K12ORCID

Affiliation:

1. School of Public Health, Imperial College London , London W12 0BZ, United Kingdom

2. National Heart & Lung Institute, Imperial College London , London W12 0BZ, United Kingdom

3. Usher Institute, University of Edinburgh , Edinburgh EH16 4UX, United Kingdom

4. Institute of Health Informatics, University College London , London NW1 2DA, United Kingdom

5. British Heart Foundation Data Science Centre, Health Data Research UK , London NW1 2DA, United Kingdom

Abstract

AbstractObjectiveTo develop a standardizable, reproducible method for creating drug codelists that incorporates clinical expertise and is adaptable to other studies and databases.Materials and MethodsWe developed methods to generate drug codelists and tested this using the Clinical Practice Research Datalink (CPRD) Aurum database, accounting for missing data in the database. We generated codelists for: (1) cardiovascular disease and (2) inhaled Chronic Obstructive Pulmonary Disease (COPD) therapies, applying them to a sample cohort of 335 931 COPD patients. We compared searching all drug dictionary variables (A) against searching only (B) chemical or (C) ontological variables.ResultsIn Search A, we identified 165 150 patients prescribed cardiovascular drugs (49.2% of cohort), and 317 963 prescribed COPD inhalers (94.7% of cohort). Evaluating output per search strategy, Search C missed numerous prescriptions, including vasodilator anti-hypertensives (A and B:19 696 prescriptions; C:1145) and SAMA inhalers (A and B:35 310; C:564).DiscussionWe recommend the full search (A) for comprehensiveness. There are special considerations when generating adaptable and generalizable drug codelists, including fluctuating status, cohort-specific drug indications, underlying hierarchical ontology, and statistical analyses.ConclusionsMethods must have end-to-end clinical input, and be standardizable, reproducible, and understandable to all researchers across data contexts.

Funder

NIHR Imperial Biomedical Research Centre

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3