Review of codelists used to define hypertension in electronic health records and development of a codelist for research

Author:

Massen Georgie MayORCID,Stone Philip W,Kwok Harley H Y,Jenkins Gisli,Allen Richard J,Wain Louise V,Stewart Iain,Quint Jennifer KathleenORCID

Abstract

Background and aimsHypertension is a leading risk factor for cardiovascular disease. Electronic health records (EHRs) are routinely collected throughout a person’s care, recording all aspects of health status, including current and past conditions, prescriptions and test results. EHRs can be used for epidemiological research. However, there are nuances in the way conditions are recorded using clinical coding; it is important to understand the methods which have been applied to define exposures, covariates and outcomes to enable interpretation of study findings. This study aimed to identify codelists used to define hypertension in studies that use EHRs and generate recommended codelists to support reproducibility and consistency.Eligibility criteriaStudies included populations with hypertension defined within an EHR between January 2010 and August 2023 and were systematically identified using MEDLINE and Embase. A summary of the most frequently used sources and codes is described. Due to an absence of Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) codelists in the literature, a recommended SNOMED CT codelist was developed to aid consistency and standardisation of hypertension research using EHRs.Findings375 manuscripts met the study criteria and were eligible for inclusion, and 112 (29.9%) reported codelists. The International Classification of Diseases (ICD) was the most frequently used clinical terminology, 59 manuscripts provided ICD 9 codelists (53%) and 58 included ICD 10 codelists (52%). Informed by commonly used ICD and Read codes, usage recommendations were made. We derived SNOMED CT codelists informed by National Institute for Health and Care Excellence guidelines for hypertension management. It is recommended that these codelists be used to identify hypertension in EHRs using SNOMED CT codes.ConclusionsLess than one-third of hypertension studies using EHRs included their codelists. Transparent methodology for codelist creation is essential for replication and will aid interpretation of study findings. We created SNOMED CT codelists to support and standardise hypertension definitions in EHR studies.

Funder

UK Research and Innovation

Publisher

BMJ

Reference23 articles.

1. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010 - The Lancet, Available: https://www.thelancet.com/journals/a/article/PIIS0140-6736(12)61766-8/fulltext [Accessed 10 Nov 2023].

2. The global epidemiology of hypertension;Mills;Nat Rev Nephrol,2020

3. Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension

4. Public Health England . Hypertension prevalence estimates in England, 2017, 2017. Available: https://assets.publishing.service.gov.uk/media/5e725883e90e070aca43cc9d/Summary_of_hypertension_prevalence_estimates_in_England__1_.pdf

5. ICD-10: History and Context

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3