Affiliation:
1. School of Biomedical Informatics, The University of Texas Health Science Center at Houston , Houston, Texas, USA
Abstract
Abstract
Objective
Weak supervision holds significant promise to improve clinical natural language processing by leveraging domain resources and expertise instead of large manually annotated datasets alone. Here, our objective is to evaluate a weak supervision approach to extract spatial information from radiology reports.
Materials and Methods
Our weak supervision approach is based on data programming that uses rules (or labeling functions) relying on domain-specific dictionaries and radiology language characteristics to generate weak labels. The labels correspond to different spatial relations that are critical to understanding radiology reports. These weak labels are then used to fine-tune a pretrained Bidirectional Encoder Representations from Transformers (BERT) model.
Results
Our weakly supervised BERT model provided satisfactory results in extracting spatial relations without manual annotations for training (spatial trigger F1: 72.89, relation F1: 52.47). When this model is further fine-tuned on manual annotations (relation F1: 68.76), performance surpasses the fully supervised state-of-the-art.
Discussion
To our knowledge, this is the first work to automatically create detailed weak labels corresponding to radiological information of clinical significance. Our data programming approach is (1) adaptable as the labeling functions can be updated with relatively little manual effort to incorporate more variations in radiology language reporting formats and (2) generalizable as these functions can be applied across multiple radiology subdomains in most cases.
Conclusions
We demonstrate a weakly supervision model performs sufficiently well in identifying a variety of relations from radiology text without manual annotations, while exceeding state-of-the-art results when annotated data are available.
Funder
National Institute of Biomedical Imaging and Bioengineering
Publisher
Oxford University Press (OUP)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献