Abstract
ABSTRACTObjectiveWe sought to develop a weak supervision-based approach to demonstrate feasibility of post-market surveillance of wearable devices that render AF pre-diagnosis.Materials and MethodsTwo approaches were evaluated to reduce clinical note labeling overhead for creating a training set for a classifier: one using programmatic codes, and the other using prompts to large language models (LLMs). Probabilistically labeled notes were then used to fine-tune a classifier, which identified patients with AF pre-diagnosis mentions in a note. A retrospective cohort study was conducted, where the baseline characteristics and subsequent care patterns of patients identified by the classifier were compared against those who did not receive pre-diagnosis.ResultsLabel model derived from prompt-based labeling heuristics using LLMs (precision = 0.67, recall = 0.83, F1 = 0.74) nearly achieved the performance of code-based heuristics (precision = 0.84, recall = 0.72, F1 = 0.77), while cutting down the cost to create a labeled training set. The classifier learned on the labeled notes accurately identified patients with AF pre-diagnosis (precision = 0.85, recall = 0.81, F1 = 0.83). Those patients who received pre-diagnosis exhibited different demographic and comorbidity characteristics, and were enriched for anticoagulation and eventual diagnosis of AF. At the index diagnosis, existence of pre-diagnosis did not stratify patients on clinical characteristics, but did correlate with anticoagulant prescription.Discussion and ConclusionOur work establishes the feasibility of an EHR-based surveillance system for wearable devices that render AF pre-diagnosis. Further work is necessary to generalize these findings for patient populations at other sites.
Publisher
Cold Spring Harbor Laboratory