Measuring intraoperative surgical instrument use with radio-frequency identification

Author:

Hill Ian1ORCID,Olivere Lindsey2,Helmkamp Joshua2,Le Elliot2,Hill Westin3,Wahlstedt John1,Khoury Phillip2,Gloria Jared2,Richard Marc J4,Rosenberger Laura H56,Codd Patrick J15

Affiliation:

1. Pratt School of Engineering, Duke University, Durham, North Carolina, USA

2. School of Medicine, Duke University, Durham, North Carolina, USA

3. Department of Neurosurgery, Duke University Hospital, Durham, North Carolina, USA

4. Department of Orthopeadics, Duke University Medical Center, Durham, North Carolina, USA

5. Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA

6. Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA

Abstract

Abstract Objective Surgical instrument oversupply drives cost, confusion, and workload in the operating room. With an estimated 78%–87% of instruments being unused, many health systems have recognized the need for supply refinement. By manually recording instrument use and tasking surgeons to review instrument trays, previous quality improvement initiatives have achieved an average 52% reduction in supply. While demonstrating the degree of instrument oversupply, previous methods for identifying required instruments are qualitative, expensive, lack scalability and sustainability, and are prone to human error. In this work, we aim to develop and evaluate an automated system for measuring surgical instrument use. Materials and Methods We present the first system to our knowledge that automates the collection of real-time instrument use data with radio-frequency identification (RFID). Over 15 breast surgeries, 10 carpometacarpal (CMC) arthroplasties, and 4 craniotomies, instrument use was tracked by both a trained observer manually recording instrument use and the RFID system. Results The average Cohen’s Kappa agreement between the system and the observer was 0.81 (near perfect agreement), and the system enabled a supply reduction of 50.8% in breast and orthopedic surgery. Over 10 monitored breast surgeries and 1 CMC arthroplasty with reduced trays, no eliminated instruments were requested, and both trays continue to be used as the supplied standard. Setup time in breast surgery decreased from 23 min to 17 min with the reduced supply. Conclusion The RFID system presented herein achieves a novel data stream that enables accurate instrument supply optimization.

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Reference37 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3