Machine learning identifies girls with central precocious puberty based on multisource data

Author:

Pan Liyan1,Liu Guangjian1,Mao Xiaojian2,Liang Huiying1

Affiliation:

1. Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China

2. Department of Genetics and Endocrinology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China

Abstract

Abstract Objective The study aimed to develop simplified diagnostic models for identifying girls with central precocious puberty (CPP), without the expensive and cumbersome gonadotropin-releasing hormone (GnRH) stimulation test, which is the gold standard for CPP diagnosis. Materials and methods Female patients who had secondary sexual characteristics before 8 years old and had taken a GnRH analog (GnRHa) stimulation test at a medical center in Guangzhou, China were enrolled. Data from clinical visiting, laboratory tests, and medical image examinations were collected. We first extracted features from unstructured data such as clinical reports and medical images. Then, models based on each single-source data or multisource data were developed with Extreme Gradient Boosting (XGBoost) classifier to classify patients as CPP or non-CPP. Results The best performance achieved an area under the curve (AUC) of 0.88 and Youden index of 0.64 in the model based on multisource data. The performance of single-source models based on data from basal laboratory tests and the feature importance of each variable showed that the basal hormone test had the highest diagnostic value for a CPP diagnosis. Conclusion We developed three simplified models that use easily accessed clinical data before the GnRH stimulation test to identify girls who are at high risk of CPP. These models are tailored to the needs of patients in different clinical settings. Machine learning technologies and multisource data fusion can help to make a better diagnosis than traditional methods.

Funder

National Key Research and Development Project of China

Guangzhou Institute of Pediatrics

Guangzhou Women and Children’s Medical Center

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3