Meta-analysis of machine learning models for the diagnosis of central precocious puberty based on clinical, hormonal (laboratory) and imaging data

Author:

Chen Yilin,Huang Xueqin,Tian Lu

Abstract

BackgroundCentral precocious puberty (CPP) is a common endocrine disorder in children, and its diagnosis primarily relies on the gonadotropin-releasing hormone (GnRH) stimulation test, which is expensive and time-consuming. With the widespread application of artificial intelligence in medicine, some studies have utilized clinical, hormonal (laboratory) and imaging data-based machine learning (ML) models to identify CPP. However, the results of these studies varied widely and were challenging to directly compare, mainly due to diverse ML methods. Therefore, the diagnostic value of clinical, hormonal (laboratory) and imaging data-based ML models for CPP remains elusive. The aim of this study was to investigate the diagnostic value of ML models based on clinical, hormonal (laboratory) and imaging data for CPP through a meta-analysis of existing studies.MethodsWe conducted a comprehensive search for relevant English articles on clinical, hormonal (laboratory) and imaging data-based ML models for diagnosing CPP, covering the period from the database creation date to December 2023. Pooled sensitivity, specificity, positive likelihood ratio (LR+), negative likelihood ratio (LR-), summary receiver operating characteristic (SROC) curve, and area under the curve (AUC) were calculated to assess the diagnostic value of clinical, hormonal (laboratory) and imaging data-based ML models for diagnosing CPP. The I2 test was employed to evaluate heterogeneity, and the source of heterogeneity was investigated through meta-regression analysis. Publication bias was assessed using the Deeks funnel plot asymmetry test.ResultsSix studies met the eligibility criteria. The pooled sensitivity and specificity were 0.82 (95% confidence interval (CI) 0.62-0.93) and 0.85 (95% CI 0.80-0.90), respectively. The LR+ was 6.00, and the LR- was 0.21, indicating that clinical, hormonal (laboratory) and imaging data-based ML models exhibited an excellent ability to confirm or exclude CPP. Additionally, the SROC curve showed that the AUC of the clinical, hormonal (laboratory) and imaging data-based ML models in the diagnosis of CPP was 0.90 (95% CI 0.87-0.92), demonstrating good diagnostic value for CPP.ConclusionBased on the outcomes of our meta-analysis, clinical and imaging data-based ML models are excellent diagnostic tools with high sensitivity, specificity, and AUC in the diagnosis of CPP. Despite the geographical limitations of the study findings, future research endeavors will strive to address these issues to enhance their applicability and reliability, providing more precise guidance for the differentiation and treatment of CPP.

Funder

Chongqing Municipal Education Commission

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3