Commutative action logic

Author:

Kuznetsov Stepan L1

Affiliation:

1. Department of Mathematical Logic, Steklov Mathematical Institute of RAS, 119991, Moscow, Russia and Faculty of Computer Science, HSE University, 109028, Moscow, Russia

Abstract

Abstract We prove undecidability and pinpoint the place in the arithmetical hierarchy for commutative action logic, i.e. the equational theory of commutative residuated Kleene lattices (action lattices), and infinitary commutative action logic, the equational theory of *-continuous commutative action lattices. Namely, we prove that the former is $\varSigma _1^0$-complete and the latter is $\varPi _1^0$-complete. Thus, the situation is the same as in the more well-studied non-commutative case. The methods used, however, are different: we encode infinite and circular computations of counter (Minsky) machines.

Funder

Council of the President of Russia for Support of Young Russian Scientists and Leading Scientific Schools of Russia

Publisher

Oxford University Press (OUP)

Subject

Logic,Hardware and Architecture,Arts and Humanities (miscellaneous),Software,Theoretical Computer Science

Reference25 articles.

1. On action logic: equational theories of action algebras;Buszkowski;Journal of Logic and Computation,2007

2. Infinitary action logic: complexity, models and grammars;Buszkowski;Studia Logica,2008

3. Full Lambek calculus with contraction is undecidable;Chvalovský;Journal of Symbolic Logic,2016

4. Non-wellfounded proof theory for (Kleene+action) (algebras+lattices);Das,2018

5. Linear logic;Girard;Theoretical Computer Science,1987

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Algorithmic complexity for theories of commutative Kleene algebras;Izvestiya: Mathematics;2024

2. Алгоритмическая сложность теорий коммутативных алгебр Клини;Известия Российской академии наук. Серия математическая;2024

3. Infinitary Action Logic with Multiplexing;Studia Logica;2022-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3