A bilateral Hilbert-style investigation of 2-intuitionistic logic

Author:

Drobyshevich Sergey1

Affiliation:

1. Laboratory of Computability Theory and Applied Logic, Sobolev Institute of Mathematics, Novosibirsk, Russia; Department of Algebra and Mathematical Logic, Novosibirsk State University, Novosibirsk, Russia

Abstract

Abstract We develop a bilateral Hilbert-style calculus for 2-intuitionistic logic of Heinrich Wansing. This calculus is defined over signed formulas of two types: formulas signed with plus correspond to assertions, while formulas signed with minus correspond to rejections. In this way, the provided system is a Hilbert-style calculus, which does take rejection seriously by considering it a primitive notion on par with assertion. We show that this presentation is not trivial and provide two equivalent axiomatizations obtained by extending intuitionistic and dual intuitionistic logics, respectively. Finally, we show that 2-intuitionistic logic is in some sense definitionally equivalent to a variant of Nelson’s logic with constructible falsity.

Funder

Alexander von Humboldt Foundation

Publisher

Oxford University Press (OUP)

Subject

Logic,Hardware and Architecture,Arts and Humanities (miscellaneous),Software,Theoretical Computer Science

Reference54 articles.

1. Constructible falsity and inexact predicates;Almukdad;The Journal of Symbolic Logic,1984

2. Reasoning with logical bilattices;Arieli;Journal of Logic, Language and Information,1996

3. A useful four-valued logic;Belnap,1977

4. Display logic;Belnap;Journal of Philosophical Logic,1982

5. How a computer should think;Belnap,1977

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wansing's bi-intuitionistic logic: semantics, extension and unilateralisation;Journal of Applied Non-Classical Logics;2024-01-02

2. Logical Multilateralism;Journal of Philosophical Logic;2023-09-25

3. Dual counterpart intuitionistic logic;Journal of Logic and Computation;2023-09-11

4. On Synonymy in Proof-theoretic Semantics: The Case of \(\mathtt{2Int}\);Bulletin of the Section of Logic;2023-07-18

5. Questions to Michael Dunn;Logical Investigations;2021-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3